Series New Exact Solutions to Nonlinear Nizhnik-Novikov-Veselov System Analytical Solution, Fixed Point Theory of Partially Ordered Space
نویسندگان
چکیده
منابع مشابه
Series New Exact Solutions to Nonlinear Nizhnik-Novikov-Veselov System Analytical Solution, Fixed Point Theory of Partially Ordered Space
One new solving expression is built for Nizhnik-Novikov-Veselov system in the paper. Through corresponding auxiliary equation arrangement, more than 150 analytical solutions of elementary and Jacobi elliptic functions are obtained so that the NNV system has a wider range of physical meaning. At the same time, the existence and uniqueness of this systematic solution are discussed by fixed point ...
متن کاملExact Traveling Wave Solution For The (2+1)-Dimensional Nizhnik-Novikov-Veselov (NNV) System
In this paper, we derive exact traveling wave solutions of the (2+1)-dimensional Nizhnik-NovikovVeselov (NNV) system by a presented method. The method appears to be efficient in seeking exact solutions of nonlinear equations. Key–Words: (G ′ G )-expansion method, Travelling wave solutions, (2+1)-dimensional Nizhnik-Novikov-Veselov (NNV) system, nonlinear equation, exact solution, evolution equa...
متن کاملSome results on coupled fixed point and fixed point theory in partially ordered probabilistic like (quasi) Menger spaces
In this paper, we define the concept of probabilistic like Menger (probabilistic like quasi Menger) space (briefly, PLM-space (PLqM-space)). We present some coupled fixed point and fixed point results for certain contraction type maps in partially order PLM-spaces (PLqM- spaces).
متن کاملDarboux Transformation and Variable Separation Approach: the Nizhnik-novikov-veselov Equation
Darboux transformation is developed to systematically find variable separation solutions for the Nizhnik-Novikov-Veselov equation. Starting from a seed solution with some arbitrary functions, the once Darboux transformation yields the variable separable solutions which can be obtained from the truncated Painlevé analysis and the twice Darboux transformation leads to some new variable separable ...
متن کاملGauge-invariant description of several (2+1)-dimensional integrable nonlinear evolution equations
We obtain new gauge-invariant forms of two-dimensional integrable systems of nonlinear equations: the Sawada–Kotera and Kaup–Kuperschmidt system, the generalized system of dispersive long waves, and the Nizhnik–Veselov–Novikov system. We show how these forms imply both new and well-known two-dimensional integrable nonlinear equations: the Sawada–Kotera equation, Kaup–Kuperschmidt equation, disp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics
سال: 2010
ISSN: 2152-7385,2152-7393
DOI: 10.4236/am.2010.15053